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Abstract

The paper suggests that the only feasible method for implementing adequate nearshore
wave dynamics models under conditions of extreme complexity is numerical methods with
computational experiments on powerful computers. When the fundamental laws of continuum
mechanics are roughly written for a finite element (FE) with an emphasis on the ensuing
numerical solution, the finite element method (FEM) offers great opportunities in this regard.

The FEM has the benefit of allowing for the well-approximation of coastal water areas
by a collection of irregular triangles, and their boundaries can typically be curvilinear. The
FEM has the advantage that its grid equations typically are independent of the type of grid and
its topology, setting it apart from other grid methods.

The generalized solutions to the original problems are divided into grid-like equations for
the FEM, which are derived on the basis of integral relations. The fundamental integral laws
are thus automatically maintained for grid equations. For the study of the coastal wave regime
in a non-stationary three-dimensional formulation, grid equations of the FEM are constructed
in this work.

The generalized solutions to the original problems are divided into grid-like equations for
the FEM, which are derived on the basis of integral relations. The fundamental integral laws
are thus automatically maintained for grid equations. For the study of the coastal wave regime
in a non-stationary three-dimensional formulation, grid equations of the FEM are constructed
in this work.
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Intriduction

The nearshore differs significantly from deep water areas and estuaries, which justifies
special consideration for them despite the fact that many physical and mathematical models are
valid for a wide range of conditions.

The shallow depth of the nearshore - typically 20 to 30 meters - distinguishes it from the
open sea's typical depths of 1000-2000 meters. The marine boundary of the continental shelf is
typically identified by a sharp rise in the bottom slope, which ranges from 1/500 to 1/10 on
average. In comparison to deep water areas, the bottom, which is located at a relatively shallow
depth, significantly restricts the movement of water. The near-bottom current, which is
insignificant in the open sea, becomes significant here because bottom currents are typically
quite strong.

The presence of a coastline restricts water's ability to flow in a direction perpendicular to
it, forcing the currents to diverge and orient themselves along the coast. Restrictions on the
movement of water towards the coast leads to the occurrence of a level slope, and this in turn
causes changes in the dynamics of the nearshore waters. Different regions experience the coast's
influence in different ways.

River runoff leads to a decrease in salinity, and hence the density of sea water. For the
same values of the heat flux through the sea surface, shallower water areas near the coast
experience greater temperature variations than deep water areas. As a result, coastal waters are
frequently places with noticeable horizontal gradients in salinity, temperature, and density,
which frequently result in changes to the nature of currents.

Coastal waters are also of particular economic and environmental importance. Thus, port
facilities are being built in the coastal zone. The coast is frequently used for recreation,
including well equipped beaches, swimming zones, and other forms of entertainment. The shelf
zone and the marginal seas are where most of the fishing occurs.

Breakwaters, piers, walls, and other necessary structures are built to ensure the safe
operation of ports. For the design and operation of these structures, it is essential to understand
the heights, periods, and wave approach directions in a particular area. In addition to having a
significant impact on coastal structures, waves also have an impact on the movement of beach
and bottom material, which can result in erosion in some areas and flooding in others. Unrest
is extremely difficult to predict, but forecasting techniques are essential.

Conflict Setting

Calculating the wave regime is the first and one of the most important components of the
lithodynamics model (bank abrasion and accumulation, bottom erosion and sedimentation,
transport of sediment and suspension) [1,2,6]. In conditions of extreme complexity of adequate
models of wave dynamics in the coastal zone [3], numerical methods with computational
experiments on powerful computers are typically the only way to implement them.

Building a model while considering the numerical method and algorithm for its
implementation therefore seems quite justified. When the fundamental laws of continuum
mechanics are roughly written for a finite element (FE) with an emphasis on the ensuing
numerical solution, the finite element method (FEM) offers good opportunities in this regard

[4].
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The FEM belongs to the class of projection methods with unique coordinate functions
possessing a final carrier. The prospectivity of this method for issues involving coastal
dynamics is conditioned by a number of its significant characteristics and which can give the
numerical results of a fresh quality.

When modeling near-shores, the domain of integration is frequently a complex cluster of
interconnected domains. In this regard, FEM has the benefit of accurately approximate the
coastal water area using a collection of irregular triangles with curvilinear boundaries.

Continuous distributions of the given and desired parameters cover the entire area for
continuum objects. Therefore, using approximations, which are also defined across the entire
integration domain, is natural. The FEM approximate solutions have this characteristic. For
them, the issue with accurate finite-difference approach interpolation of the continuum solution
is solved.. The advantage of the FEM, which distinguishes it from other grid methods, is that
the grid equations of the FEM, as a rule, do not depend on the type of grid and its topology.
This leads to wide possibilities in automating the construction of FEM schemes and introducing
grids adaptable to solutions.

The grid equations of the FEM are obtained on the basis of integral relations that
determine the generalized solutions of the original problems. Therefore, for grid equations, the
basic integral laws are automatically preserved.

Our primary tool for creating numerical algorithms was the FEM. In the section below, a
nonstationary three-dimensional formulation of the coastal wave regime is studied. To do this,
grid equations of the FEM are constructed. The comparative benefits of the FEM in the
investigation of oceanic processes have been considered [5].

Research Results
Let the rectangular Cartesian oocrdinates of a point in a continuous medium, which are
1 2 3
obtained when the sea is calm, be its material (Lagrangian) * >* > coordinates (initial
configuration). Let's divide the medium's continuous region into finite elements so that their

motion can be studied (Fig. 1).

M K

Fig. Scheme of a continuous medium element motion

The general equation of motion for a finite element (FE) in a continuous medium has
the following structure [4].
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dv'M mj
mMNd_;_+ J‘t j‘//N,m(5ﬁ +'//M,j“iM)dVo = Pni> (1)

Vv(c)

where  u (z),v" (r) are components of the displacement and velocity vectors of node M;

v, (x',x*,x*) are local interpolation (basic) functions.

Substituting t" = -y, p*G" +yG'”"GJi(1//P’kviP +1//P’iv,f’) into Eq.(1), we have the relation
between the components of the stress tensor and strain rates for an isotropic incompressible
viscous fluid [5] in a finite element form: (here p”’ () is the pressure at the node, L; G" are
contravariant components of the metric metric tensor, in the current configuration C ), for the

given case equation of the FE motion is obtained

M
dv,

My ? + alli/in/f - bNinL = Pni> ()

where the mass matrix for FE is m,,, = I PV dVy,

Vo(e)
coefficients at nodal velocities

ahp = [1(G™G™ + G™GP NS, + Yy " W p WV

Voce)

coefficients at nodal pressures

by, = J.GmJ (5_;1' + WM,_/”;‘M )//L‘//N,deo )

Vo(e)

components of the generalized force at the node N [4]

Py = J.poF;l//NdVo + J.Sj(é‘ji + ‘/’M,_/“;M )//NdAﬂﬂ 3)
Yo(e) Aoe)
where F, and S’ are components of intensities of external volumetric and surface forces

acting on a finite element and behaving on per unit, respectively, of volume and area in the
initial configuration C, .

To obtain the equilibrium equations for the entire ensemble of ¥, elements, we will link

the elements into a common region ¥, [4]. The interlinking specifies the relation of incidence

()
defined by the function Q) , which takes the value 1, if the V;,, element's local node N is the

same as the global node A of the linked region ¥, and the value 0 otherwise. If the local

coordinate lines of the elements coincide with the global coordinate lines of the entire region
V,, then the local values of the components are linked by relations, for example, for velocities

eV
Vi = Qa V" (here, the summation is made by A - over all global nodes).
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The global values of the components of the generalized forces in the node A of the linked
model is obtained by summing up the efforts of all local nodes coinciding with the node A [4]:

()
=> O py (4)

()
Substituting Eq.(2) into Eq.(4), we get the global equations of motion for the entire

ensemble of finite elements
M

(ez)v dV, k P L
ZQA My ——+aypV, —by, p™ | =P (5)
(e) dT

The finite element analogue of the incompressibility condition at each point of a

. . . d .
continuous medium (local condition) I (det G,.].) can be written as
r i

ZQN jy/N detGy)dV 0 (6)

Note that Eq.(6) is a linear equation with respect to nodal velocity components. For example,
for the flat case we have

dG,, +G,, dG,, -2G, dG,

 (4etG,,)=G, o o

dr dr

2

N M N, M
Gaﬂ = 50(/5’ +l//N,a uﬂ +l//M,ﬂ ua +WN,0:WM,,H uy u}/ ’

dG,

af _ M_ N
Jr ‘//Navﬁ +V/Mﬁva TWN W upt, Y, ‘H//Na'//Mﬁ” V

It should be noted that the time term was approximated using the approximator formulas.

As a result, the calculation could be simplified and the Cauchy problem could be
considered in the future as opposed to a more general evolutionary problem with an averaging
operator and a time term. The approximation properties remain unchanged in this instance, as
is well known.

Conclusions

As a result, the linear global q. (5) and (6) of motion for the entire ensemble of finite
elements were obtained to study the wave motions of the sea in the nearshore. The Crank-
Nicolson schemes [4], which offer the second order of approximation in time, can be used to
construct time approximations linked with the solution of Egs. (5) and (6). The upper block
relaxation method successfully solves the resulting algebraic equations with the proper
boundary conditions and initial data.
The validity of Eqgs.(5) and (6) holds true for boundary nodes that are situated on the bottom
and the free surface. However, unlike internal nodes, where the surface forces are entirely

balanced when the elements are connected and contribute zero to PA", the surface forces at
these nodes are calculated taking into account the influence of the atmosphere and bottom. For
instance, surface forces are calculated by neglecting wind shear stresses and atmosphere
pressure p0 for surface forces in (3)
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S/ = —pO\/Eijnk
where ny is a unit vector component of the normal to the d A, area of free surface in the initial
geometric pattern.

Different methods can be used in the model to describe the interaction with the seabed,
and these methods will be reflected in the recording of the corresponding relationships for
boundary nodes. For instance, nodal displacements and velocities at the boundary are equal to
zero when using the kinematic condition of particles adhering to a solid bottom. In this situation,

in the absence of relative movement at the bottom, bottom stresses can be estimated using
Eqgs.(5) and (6).
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onNdh UeulUGMra HNSNkU ULPLUSPL MMNSEULENh <ESURNSNE3UL
LY PLEND HUUTRE dErRuUdnr surrshh Uhnsnd

Uwnhuwéb b.U.", Qugnohét . UL.2, Unnnuw U.U.2
"U. Obpbptiph whywh wanwlwl hwdwuwpnwi
2dnwunwbh inbfuthiwlwl hwdwuwnw

Uptuwwnwupnid wnwownyyntd t, np wnwihtujw gnnnud wihputiph nhuwdhywh dnnbjubipp
dwjpwhbin pwpnnipjwt wwjdwuubpnd npwug hpwywuwgdwu dhwy huwpwynp dhongp hgnp
hwdwywpghsubph ypw hwoynnuywu dbpnnubpu Gu: Wu wnnwing dtpowynp wwppbiph
dbpnnp (FEM) dtid huwpwynpnigyniuutip £ wwihu wiu nbwpnid, Gpp dafuwuhugh hhduwlwu
opkupubipp gpynd tu Ybpowynp wmwpph (FE) hwdwp' tywunwuwninnjwsd hbnwgquw pywhu
(nédwu Ypw: dbpowynp wwppbiph dbennt niwh wju wnwybinyeniup, np enyp £ wwhu
wthwdbpd opwihtu nmwpwdpubipp dnwnwnpybip wulwunu Gnwuyniuubph dhongny, tpp npwug
uwhdwuubipp, punhwunyp wndwdp, Ywpnn Gu [hub] Ynpwaghd: dbpowynp mwpptiph dbpnnny
Yhpwnynn hwydwuwpndubipp, npwbtu Ywunu, Ywfuqwsd s6u gwugh wbuwlhg L npw
wnwninghwjhg:

Pwbwyh pwnbp. hwdwuwpwu, ywwnbuw, hbunwgnunge)niu, nwqdwywpnipjniu:

KOHEYHOJ2JIEMEHTHBIE IOCTAHOBKHU 3AJAY U1 UCCJIIEJOBAHUA
BOJIHOBBIX ITPOIIECCOB B IPUBPEKHOM 30HE MOPSI

Carunanze U.C.!, Tarommaze I1.LH.2, Koxya M.A.”

Tocyoapcmeennoiil ynusepcumem um. A. Llepemenu
? Ipysunckuii Texuuueckuti Ynusepcumem

B pabore mpemmaraercsi, 4TO B YCJIOBHUSX UYPE3BBIYAWHON CIIOKHOCTH aJ€KBaTHBIX
MoJieJlel TMHAMUKH BOJH B MPHOPEKHON 30HE €IMHCTBEHHBIM BO3MOXHBIM CIIOCOOOM HX
peanu3anuu, SBIAIOTCS  YUCJIEHHBIE METOAbl C  MPOBEACHUEM  BBIUUCIUTEIBHBIX
OKCIIEPUMEHTOB HAa MOIMHBIX KOMIIBIOTEpax. B 3TOM Tu1aHe OONbINHE BO3MOXHOCTH
MPEIOCTABIISAET METOJI KOHEUYHBIX 3JeMeHTOB (MKD), xorma ocHOBHBbIE 3aKOHBI MEXaHHMKHU
CIUIOIIHON Cpelbl MPUONMKEHHO 3aMMCBIBAIOTCSA JJis  KoHeuHoro osnemeHTa (KD) c
OpUEHTAIMEH Ha TToclieytoliee unciaeHHoe permenne. MKD obnagaeT TeM JOCTOMHCTBOM, YTO
MO3BOJIIET XOPOIIO amnmpoOKCUMHUPOBATh MPUOPEKHBIE aKBATOPUU HAOOPOM HEPETyJSpPHBIX
TPEYroJbHUKOB, NMPUYEM HX TPAHUIBI MOTYT ObITh, BOOOIIE TOBOPS, KPHUBOJIMHEWHBIMH.
HocrounctBom MKD, oTiauyarommum €ro ot JpPyrux CETOYHBIX METOOB, SIBISIETCSA TO, YTO
cerounble ypaBHeHUst MKD, kak npaBuiio, He 3aBUCST OT BUJIa CETKU U €€ TOTIOJIOTUH.

Cerounble ypaBHeHuss MKD mnoisydaroTcs Ha OCHOBE MHTETPAIbHBIX COOTHOILEHUH,
OTIPEICIISIONINX 0000IIEHHBIC PEIICHIS UCXOHBIX 3a/1a4. [103TOMy Al CEeTOYHBIX ypaBHEHUMH
ABTOMATUYECKH COXPAHSIFOTCS OCHOBHBIC MHTErPATbHBIC 3aKOHBI. TAHHOM PaboTe MPOBOTUTCS
MOCTPOEHNE CETOUHBIX ypaBHeHn MKD 1y1st ncciaenoBanms mpuOpEKHOTO BOJTHOBOTO PEXKUMA
B HECTAIlMOHAPHOW TPEXMEPHOM MOCTAHOBKE.

Knroueswie cnoea: Bonna, 6eper, KOHEUHBIN JIEMEHT, YUCICHHbBIE METO/IbI.
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