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Abstract

The article considers the stability of fluid movement in free-flow conduits of circular
cross section. Using the method of wave perturbations, for the first time, it is mathematically
substantiated why the flow in tunnels or pipelines of circular cross section occurs intermittently
when they are almost completely filled. The obtained theoretical results are consistent with
existing experimental and field observations, according to which in free-flow conduits of
circular cross section, when they are filled by more than 92-93%, water always moves
intermittently, with bursts to the ceiling, i.e., it is unstable.

Asymptotic equations are also displayed for describing wave movements in half or to a
small degree of round cross -sectional channels, a qualitative analysis of which indicates the
stability of the surface waves that arose in them.
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Introduction

The protection of the soil from a variety of harmful factors, such as washing, wind drift.

The capacity of tunnels and pipelines operating in a non-pressure mode depends
significantly on the stability of fluid movement in them. In general, the study of stability issues
is not limited to consideration of simple schemes. This is a very complex problem, which lies,
first of all, in the formulation of mathematical criteria for the stability of the motion of solids,
particles of liquids, gases or molecules. Unlike hydraulic methods, the study of the stability of
flows, which are developed in the works of Voynich-syanozhnsky [1] and Kartvelishvili [2]
and in which the influence of the hydraulic index of the channel on the stability of water flows
is studied, the study of the stability of flows in free-flow tunnels by more "clean" -
hydrodynamic methods is associated with the use of a very complex mathematical apparatus.
This applies to the study of wave disturbances even in seemingly simple conduits, such as a
tunnel or a conduit with a semicircular cross section (Lamb [3]).
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In hydrodynamics, in addition to the criteria of absolute stability and instability of motion,
developed by Lyapunov at the end of the 19th century for material particles, the Kelvin-
Helmholtz stability criterion [3] is widely used, which, within the framework of a plane
problem, determines the possibility of the existence of internal periodic waves of constant
length in time and depends on the oscillation frequency of these waves. If the frequency,
depending on the difference in flow velocities, takes a complex (imaginary) value, then the
surface of internal waves increases infinitely in time and the movement becomes unstable. It
should be noted that the Kelvin instability is adequate to the absolute Lyapunov instability,
which cannot be said about stability, since, according to Lyapunov, stability means
maintenance, i.e. return to the mirror (unperturbed) interface of these flows after removal of
perturbations from this surface..

The study of the stability of flows in channels is directly related to the study of the
propagation of surface along-shore waves, the exact solutions of which, as noted above, are
limited only to cases of triangular channels with slope angles of sides to the horizon of 45° and
60°. As for non-pressure channels of a circular cross section, as one of the founders of the theory
of wave motion of liquids, the great American scientist George Lamb, noted, «the wave motion
in them has not been studied even for such a seemingly simple cross section as a semicircular

cross section».

Conflict Setting
The present work is devoted to filling the existing gap in this direction, in which three,
practically very important cases of propagation of surface waves in channels of a circular cross
section are considered by asymptotic methods. In particular, the case of the presence of:
1. Channel of circular cross section almost completely filled with water;
2. A channel of circular cross section with a very shallow depth of water flow;
3. Channel of circular cross-section is half filled with water flow.

Research Results

1.System of basic equations. As noted above, the wave motion of a fluid in most cases
makes it possible to ignore the viscous forces. This assumption greatly simplifies the
equations of the dynamics and at the same time allows us to attribute a wave movement to the
class without vortex potential movements. This means that the velocity field at the passing
point occupied by the liquid can be determined by one vector equality

V= gradg, (1)

where ¥ is the velocity vector of water particles, ¢ is the potential of the velocity field, which
in our case, in addition to the wave motion of the liquid, is due to the motion of the liquid at a
constant speed U,,.

In the general case, if we choose the Cartesian coordinate system, in which the axis Z is

directed vertically upward from the center of the conduit of circular cross section, and the axes
xand Y are aligned with the equatorial plane so that the direction of the axis x coincides with

the direction of flow (Fig. 1), then equality (1) for the velocity components u,v,w will be

written in the form
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where @ is the desired potential of the speed of wave motion, with respect to which the system

of linear equations of wave motion takes the following form:

0’9 3 0
P+22.29%2_,, 3)
ox~ oy~ Oz
g .0 0’ 0’
+U +2U, ——=— , at z==h; 4
ot Ve e Sar U @
0p
a_n:O’ at z = R,(x,), (5)

Equation (3) is the Laplace equation, which is valid at an arbitrary point occupied by the
fluid; Equation (4) (where ¢ time) is a dynamic boundary condition on the wave surface of a
moving fluid, i.e. on the surface , where is the coordinate of the wave surface measured from
the mark of the undisturbed level of the water flow in the tunnel and which is a negligible value
compared to the depth of the center of the tunnel circle. The “+” sign is accepted when the
tunnel is more than half filled with water flow, and the “-” sign is otherwise; Equality (5) is the
condition of non-flow of the inner cylindrical surface of the tunnel.

For further transformations, it is more convenient to write the above equations in a
cylindrical coordinate system x, » and @ the relationship of which with Cartesian coordinates

is expressed by the following equalities:

X=Xx;

y=rcos@ ; z=rsinf. (6)

Here it is assumed that the axis again coincides with the longitudinal axis of the circular
duct (Fig. 1).

al

Fig.1 The calculation schemes of the wave movement of the flow in the non
-pressure water conduit of the round cross section.
a) an almost completely filled waterflower;
b) a water water with a small filling compared to the radius

The radius vector r originates at the center of the circle, and the polar angle € is
measured from the horizontal diameter in the opposite clockwise direction. In such a coordinate
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system, the equations of the unperturbed free surface of the flow, depending on whether this

surface is above or below the horizontal axis X, respectively, is written in the form
r sinf = +h and r sin@ = —h , and the cylindrical surface of the conduit is expressed by the
equality 7 = R, where R, is the inner radius of the conduit.

As a result of standard transformations, the system of equations (3) + (5) in
polar coordinates takes the form:

o’p 0’ 1 0p 1 0%¢
ox* or* r or r* 00° @
o’p , 0 o’p . 0p cos@ Op )
+U +2U, - = —gsin@——-g——-—L at rsin@ = +h; 8
o e T Y ma e 8 ee T ®)
0
6—f=0,at r=R, )

The solution of the boundary value problem (7)+(9) is associated with large, yet
insurmountable mathematical difficulties. In the case of water conduits of circular cross section,
these difficulties are further aggravated by the fact that it is impossible to choose such a
coordinate system in which the cylindrical surface of the conduit and the free surface of the
water flow are simultaneously described by linear relations. In particular, if in a cylindrical
coordinate system the round inner surface of the conduit is described by a linear formula, then
for the horizontal surface of the flow in the conduit we are forced to apply a nonlinear
dependence. Other types of transformations cause non-linear changes in the system of basic
equations and create new difficulties. For all these reasons, we are forced to confine ourselves
to the consideration of the limiting (asymptotic) fillings of a circular water conduit listed above.
But before that, let's make general transformations based on the representation of the velocity
potential of wave disturbances as a periodic complex function in time ¢ and along the
longitudinal coordinate x :

o =y (r,0)expli(ot — k)], (10)

where i is the imaginary unit; o = 27/ 7 - frequency of wave oscillations; 7 - period;
k =27/ A - wave number; 1 - wavelength (distance between two adjacent points of the wave
surface that are in the same phase).

Taking into account the notation (10), the system of basic equations (11)+(13) takes a
simpler form

v 1oy 1w ,
it T —k*y =0, 11
ort ror r*oe? (an
. 0 00
(G—kUO)zl//:gsme—l//-l-&—w, on the surfaces rsin@ = +h; (12)
or r 00
0
Y0, at r=R,. (13)
or
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The system of equations (11) + (13) still retains its generality, since it can be used as the

basis for studying the movement of waves on the free surface of a free flow in water conduits
of a circular cross section and arbitrary filling

2. Stability of water flow in an almost filled non-pressure round cylindrical channel.

If a circular water conduit is filled almost completely, we can assume that the change in
the polar angle within the narrow free surface of the flow is insignificant, and its sine and cosine
take on the values sin @ =~ land cos@ = 0. In this case, taking into account condition (10),
we can also assume that the function ¥ does not change in @ not only on the free surface, but
also at any internal point of the fluid and write the system of equations (11) = (13) in the
following simplified form:

O’ 1 oy 2
—. —k*y =0; 14
8r2+r or v (14)
2 . 8&//
(G—kUO)t//:gsm@a—, at r = h; (15)
r
0
W0, atr=gr, . (16)
or

As you can see, due to the small width of the liquid surface, the simplified boundary
condition (15), in contrast to (12), is satisfied not on the surface »sin @ = /&, but at a point
7 = h on the vertical axis of symmetry.

The boundary value problem (14) + (16) is subject to exact solution. In particular, the
solution of equation (14) (the Bessel equation) is usually written in modified zero-order Bessel
functions (Watson)

4 :Cllo(kr)—i-CZKO(kr) ) (17)

where C,and C, are integration constants; The functions 7,(kr)and K, (kr) (K, (kr)also called

the McDonalds function [6,7, 8]) belong to the class of special functions and are not expressed

in terms of elementary functions, which makes them somewhat inconvenient for engineering

use, despite the fact that these functions are presented in tabular and graphical forms (Watson

[5], Jahnke- Emde-Lesh [6]). Therefore, whenever possible, instead of special functions, they

often resort to using their asymptotic representations, which are usually expressed in terms of

elementary functions and which correspond to large values of their argument (in our case k7).
These asymptotic formulas have the following form (Matthews-Walker [9]):

1,(kr) = < [1+0(iﬂ; (18)

27kr kr

K, (kr)= \/zzkre-’" {1 + otéﬂ : (19)
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1
where O(k—j denotes an infinite sum by an order of magnitude of small values.
r

Taking into account expressions (18) and (19), the general asymptotic solution (17) is
written as follows:

ekr T .
w=C +C ‘/ e . 20
1 ,—27Zkl” 2 2Ver (20)

With the help of the boundary condition (16), which is satisfied on the inner cylindrical
surface of a sufficiently large radius, the constants and can be reduced to a single constant . In
particular, if we use the rule of differentiation of asymptotic dependences (Stoker [4]), then
from the boundary condition (16) we obtain:

1 C

o T 1 R
.—:C —-—e_ 0 = — , 21
ame (R, N2k R, 2 @l

G

from which the constants are easily determined and, consequently, the real part of the desired
function takes on the following final output:

w=C \/\/g coshk(RO - r), (22)
r

Let us now substitute (22) in the boundary condition (15), which is satisfied on the free
surface of the liquid. Following its asymptotic derivative, we get:

(6 —kU, ) coshk(R, —h)=—gsinh k(R, —h), (23)

whose solution with respect to frequency leads to the following dispersion relation:

o =kU, £./- gktanhk(R, — ) . (24)

It is the analysis of this dispersion relation that gives us the opportunity to judge the
Helmbholtz stability of wave motion in a water conduit with a circular cross section filled almost

completely. In particular, according to (24), since % is always less than R, , and k& > 0, the

value of the expression under the root is negative and, therefore, (24) is a complex number:

o = kU, i\ gk tanh k(R, — 1) . (25)

If we substitute this frequency value in expression (10), we will see that one of the roots
of formula (25), (namely, the root with a negative sign), leads to an exponential growth in time
of the potential of wave disturbances

@ ~e™, where m=.gktanhk(R, —h)) , (26)
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which indicates the instability of the wave motion in an almost filled round cylindrical conduit.

Thus, in the study, an important result was obtained:

If a circular conduit (tunnel or pipeline) is almost completely filled with water, then
any disturbance on the surface of this liquid will inevitably increase and lead to a splash
of liquid on the ceiling of the conduit.

It is the manifestation of such instability that can explain the decrease in the throughput
of round water conduits when they are almost completely filled. In this connection, let us recall
the process of pouring water from a bottle, which, as you know, if the bottle is sufficiently
inclined, is always accompanied by vibration and a pulsating flow of water.

The results of experimental studies of circular water conduits really confirm the fact that
when the water conduit is almost completely filled, it becomes more difficult to measure the
flow of water into it. In particular, one of the well-known representatives of the Georgian
researcher Chanishvili [10], as a result of his meticulous experiments carried out in 1947, came
to the conclusion that “sufficiently reliable experiments are possible only up to filling
0,93+0,95D (D - diameter). With an increase in filling from 0.93+0.95% to 100%, the

experiments became impossible; Neither ventilation holes nor viewing windows helped, and
therefore the points corresponding to this regime were plotted only by recalculating the
experimental points corresponding to the pressure regime". In addition, it is most remarkable
for us that Chanishvili came to the conclusion that “despite the change in slopes (that is, the
change in flow rates - the authors), the maximum throughput in the experimental pipeline was
observed when the pipeline was filled to 0.92+0.93% ". At the same time, "the experiments
failed to determine the effect of ventilation (i.e., the presence of an air layer - the authors) on
the flow resistance in general."

As you can see, our theoretical studies are fully consistent with the results of Chanishvili's
experiments. This correspondence is also manifested in the fact that, according to dependence (23), the
instability does not depend on the flow velocity; It depends only on the filling of the conduit (i.e., on the
thickness (Ro - h) of the air layer between the free flow surface and the ceiling of the vessel) and on

the perturbation wavelength (l =2/ k). As the values of these quantities increase, the coefficient of
flow instability decreases.

This feature of the pressureless movement of water in almost filled water conduits of a circular
cross section was completely rejected by some well-known experts in hydraulics (for example, Bulow
[11]), believing that with an increase in the liquid level in the conduit, the water flow increases
monotonically. Other hydraulics (including Chanishvili) believed (and is still accepted in hydraulics
courses) that, in accordance with the Shezy law, in circular water conduits, reaching a certain filling (in
particular, 95% according to Luger [12]), the water flow begins to decrease, which can hardly be
imagined with increasing flow depth.

As a result of our study, when a water conduit with a circular cross section is 90% or
more filled with water, the use of the Chezy formula is not allowed, since with such a filling,
as shown above, it is in principle impossible to implement a stable stationary mode of water
flow in a water conduit with a circular cross section, which corresponds to Chezy formula.

As it follows from [13], the unstable state of the flow persists even after the pipeline is
completely filled and the flow passes into the turbulent pressure regime.

3. Stability of water flow in an almost empty channel round-cylindrical shape. In
this particular boundary case (Fig. 1.0)) the polar angle & takes values close to 90°, so that
the following approximate equalities sin @ = —1 and cos@ = 0O are fulfilled.
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In addition, when the water horizon is located below the center of the conduit, in condition

(10), before £, the sign "-" must be taken. Taking into account all this, the system of equations
(9)+=(11) will take the form:

v 1dy
L2 Yy -0, 27
dr* r dr v @7)
d
(c-kUVy=-g- L at r=h: (28)
dr
d
V-0, at r=R,. (29)
dr

Here, as well as in equation (14), the second order derivative with respect to the polar
angle is neglected as a small value. This neglect is also due to the fact that the boundary
conditions (13) and (28), which are satisfied on the free surface of the liquid, do not contain the
derivative with respect to the polar angle &. Thus, the difference between the systems of
equations (27)+(29) and (14)+ (16) is expressed only in the "-" sign in the boundary condition
(25), which is in front of the term CZ—V/

r

It is this sign that determines the fundamental difference that the solution of the system
of equations (27) + (29) gives in comparison with the solution of the system (14) + (16). We
will not go into the details of solving system (27) + (29), since this procedure actually repeats
the solution procedure described in the previous paragraph. We present only the final results
of the asymptotic solution of system (27) + (29). In particular, as in the previous case, the
velocity field potential in complex form will be expressed by the following asymptotic
dependence:

. R ‘
p=y - =c |20 coshk(R, - r)e ™™ (30)
r
or, if we confine ourselves to the real part of the solution (30), - the dependence

@ =, /& cosh k(Ro - r)cos(oT — kx) , (31)
r

in which, in contrast to dependence (22), the frequency of wave oscillations is a real number
and is calculated by the formula

oc=kU, % \/gk tanh k(R, — /), (32)

according to which the wave motion in a water conduit with a circular cross section, at a
moderate speed and with a filling that is small compared to the radius, is stable.

4. On the stability of the water flow in a half-filled round cylindrical channel. When
a water conduit of circular cross section is half filled, it can be assumed that the polar angle &
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of oscillation of the free surface is very small and, therefore, the following approximate
equalities sSin @ = @ and cos@ = tlare fulfilled (the sign “-” corresponds to the
consideration of the semicircle left from the symmetry axis of the channel. We will restrict
ourselves to the consideration of the right semicircle, with the sign “+ ”, which is identical to
the consideration of the left semicircle).

Then, taking into account the approximate equalities Sin @ = @ and cos@ = *1  the
system of basic equations (9)+(11) takes the form:

’p 1 0p 1 0’0 ,
— =+ —-ky =0 33
o rar 2 o0t Y ©3)
0
(G—ka)ZWZ%%, at 6=0; (34)
0
a_W:O’ at r=R, . (35)
r

As we can see, the system of equations (33)+(35) differs significantly from the systems
of equations (14)+(16) and (27)+(29) considered above. This difference is primarily manifested
in the condition on the free surface (34), according to which the oscillation frequency o
depends on the derivative of the potential with respect to the polar angle €. Boundary
conditions (34)+(35) defined by two different arguments indicate that in the case under
consideration the problem can have several solutions.

Even an approximate solution of the system of equations (33)+(35) is associated with
great mathematical difficulties. We will consider here only the possibility of propagation in a
semicircular water conduit of such waves, symmetric about the axis, whose velocity potential
does not depend on the polar angle € . In this case, as follows from condition (34), the frequency
of wave oscillations should be equal to the product of the wave number and the constant flow
velocity o = kU, which, in this case, indicates the absence of longitudinal waves, not only in

the case when the flow velocity U, = 0, but also in the case , when U, #0.

Indeed, if we use the equality o =AU, and substitute it in the substitute it in the
expression 77 =a,sin(ot —kx) for the wave surface, we get that 7 =a,sink(Uyt—x),
according to which, since in our case the velocity U, = x /¢, the coordinate of the wave surface

n turns out to be a constant (namely, zero) value.

Conclusion

Mathematically non-rigorous statement, allows us only to assume that the uniform flow
of water in half-filled channels of circular cross section is always stable and the flow retains its
original mirror surface.
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Upwnwddty £ uwl Yhuny b thnpp swihny opny (gdwsd Yinp Yuipdwdpny gpwnwipnud
ownddwu wuphdnnunhy hwywuwnpnidubip, npnug npnywywu ybipindnieinitup gnyg £ wwipu,
np wyn ywpwgwjnw wnwowgnn dwybtipbnigwihu wihpubipp Ywntu Gu:

Pwhbuyp pwnbp. ns Gupnidwihtu gwndnwd, Yinp Yunpdwdp, wihpwihtu gpgnnwiubn,
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OB YCTOMYUBOCTH ABUKEHMS BOJIbI B BE3HAIIOPHBIX
BOJAOBOJAX KPYIJIOI'O IIOIIEPEYHOI'O CEYEHUA

Iarommnze LI.H., Kogya M.A.
I py3unckuii mexnuueckuii yHugepcumem

PaCCManI/IBaCTCH yCTOfI‘-IHBOCTI: JOBUXKXCHUA XUIKOCTH B 663HaHOpHBIX BOOJOBOJAX
KpyTJIoro momnepedHoro cedeHus. C MOMOIIBI0O METOJa BOJHOBBIX BO3MYIIECHUW BIIEPBBIC
MaTeMaTU4eCKH OOOCHOBAHO, MOYEMY TCUCHMsI B TyHHENSX WM TPyOONpOBOJAX KPYTIOTO
CCUCHUS HpOI/ICXOI[I/IT HpGpBIBI/ICTO, KOorga OHHU 3alIOJIHCHBI ITOYTU ITOJIHOCTBIO. HOHy‘ICHHBI@
TeOpeTI/I‘-IeCKI/Ie pe3yanaTH COF.HaCy}OTCH C CYH_ICCTBYIOH_II/IMI/I E)KCHepI/IMeHTa.HBHBIMI/I n
HAaTypHBIMA HAOJIFOJICHUSIMHU, COTJIACHO KOTOPHIM B OE3HAMOPHBIX BOJOBOAAX KPYTIIOTO
CEYCHHS TIPH WX 3alOoJHEHUH Oosiee yeM Ha 92-93% Bojaa Bceraa ABHKETCS MPEPHIBUCTO, CO
BCIIECKaMH Ha MOTOJOK, T. €. HEYCTOMYHUBO.

BBIBO,Z[SITCH TAKXC ACUMIITOTUYCCKUC ypaBHeHI/IH IJIA OIMMCAaHUSI BOJTHOBBIX ,Z[BI/I)KeHI/Iﬁ B
HaITOJIOBHHY WJIM B MajlOM CTEMEHW HAIOJIHCHHBIX KaHAJIaX KPYTJIOro MOMEPEYHOr0 CEYCHMUS,
KaueCTBCHHBIM aHaJW3 KOTOPBIX YKa3blBaeT HA YCTOWYMBOCTh BO3HHUKIIMX B HHX
HOBerHOCTHBIX BOJIH.

Knroueswvie cnoea: 6e3nanopHoe IBUKEHHE, KPYIJIOE CEYEHHE, BOJIHOBbIE BOSMYLICHMUS,
YCTOHYUBOCTb.
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