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Abstract 
The article considers the stability of fluid movement in free-flow conduits of circular 

cross section. Using the method of wave perturbations, for the first time, it is mathematically 
substantiated why the flow in tunnels or pipelines of circular cross section occurs intermittently 
when they are almost completely filled. The obtained theoretical results are consistent with 
existing experimental and field observations, according to which in free-flow conduits of 
circular cross section, when they are filled by more than 92–93%, water always moves 
intermittently, with bursts to the ceiling, i.e., it is unstable. 

Asymptotic equations are also displayed for describing wave movements in half or to a 
small degree of round cross -sectional channels, a qualitative analysis of which indicates the 
stability of the surface waves that arose in them. 

 
Key words: non-pressure motion, circular section, wave disturbances, sustainability. 

 

Introduction  
The protection of the soil from a variety of harmful factors, such as washing, wind drift. 
The capacity of tunnels and pipelines operating in a non-pressure mode depends 

significantly on the stability of fluid movement in them. In general, the study of stability issues 
is not limited to consideration of simple schemes. This is a very complex problem, which lies, 
first of all, in the formulation of mathematical criteria for the stability of the motion of solids, 
particles of liquids, gases or molecules. Unlike hydraulic methods, the study of the stability of 
flows, which are developed in the works of Voynich-syanozhnsky [1] and Kartvelishvili [2] 
and in which the influence of the hydraulic index of the channel on the stability of water flows 
is studied, the study of the stability of flows in free-flow tunnels by more "clean" - 
hydrodynamic methods is associated with the use of a very complex mathematical apparatus. 
This applies to the study of wave disturbances even in seemingly simple conduits, such as a 
tunnel or a conduit with a semicircular cross section (Lamb [3]). 
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In hydrodynamics, in addition to the criteria of absolute stability and instability of motion, 
developed by Lyapunov at the end of the 19th century for material particles, the Kelvin-
Helmholtz stability criterion [3] is widely used, which, within the framework of a plane 
problem, determines the possibility of the existence of internal periodic waves of constant 
length in time and depends on the oscillation frequency of these waves. If the frequency, 
depending on the difference in flow velocities, takes a complex (imaginary) value, then the 
surface of internal waves increases infinitely in time and the movement becomes unstable. It 
should be noted that the Kelvin instability is adequate to the absolute Lyapunov instability, 
which cannot be said about stability, since, according to Lyapunov, stability means 
maintenance, i.e. return to the mirror (unperturbed) interface of these flows after removal of 
perturbations from this surface.. 
        The study of the stability of flows in channels is directly related to the study of the 
propagation of surface along-shore waves, the exact solutions of which, as noted above, are 
limited only to cases of triangular channels with slope angles of sides to the horizon of 45° and 
60°. As for non-pressure channels of a circular cross section, as one of the founders of the theory 
of wave motion of liquids, the great American scientist George Lamb, noted, the wave motion 
in them has not been studied even for such a seemingly simple cross section as a semicircular 
cross section. 

Conflict Setting 
The present work is devoted to filling the existing gap in this direction, in which three, 

practically very important cases of propagation of surface waves in channels of a circular cross 
section are considered by asymptotic methods. In particular, the case of the presence of: 

1. Channel of circular cross section almost completely filled with water;
2. A channel of circular cross section with a very shallow depth of water flow;
3. Channel of circular cross-section is half filled with water flow.

Research Results 
1.System of basic equations. As noted above, the wave motion of a fluid in most cases

makes it possible to ignore the viscous forces. This assumption greatly simplifies the 
equations of the dynamics and at the same time allows us to attribute a wave movement to the 
class without vortex potential movements. This means that the velocity field at the passing 
point occupied by the liquid can be determined by one vector equality 

,φgradV =


       (1) 

where V


 is the velocity vector of water particles, φ  is the potential of the velocity field, which
in our case, in addition to the wave motion of the liquid, is due to the motion of the liquid at a 
constant speed 0U . 
        In the general case, if we choose the Cartesian coordinate system, in which the axis z is 
directed vertically upward from the center of the conduit of circular cross section, and the axes 
x and y are aligned with the equatorial plane so that the direction of the axis x coincides with 
the direction of flow (Fig. 1), then equality (1) for the velocity components wvu ,,  will be 
written in the form 
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where ϕ  is the desired potential of  the speed of wave motion, with respect to which the system 
of linear equations of wave motion takes the following form: 
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Equation (3) is the Laplace equation, which is valid at an arbitrary point occupied by the 
fluid; Equation (4) (where t  time) is a dynamic boundary condition on the wave surface of a 
moving fluid, i.e. on the surface , where is the coordinate of the wave surface measured from 
the mark of the undisturbed level of the water flow in the tunnel and which is a negligible value 
compared to the depth of the center of the tunnel circle. The “+” sign is accepted when the 
tunnel is more than half filled with water flow, and the “-” sign is otherwise; Equality (5) is the 
condition of non-flow of the inner cylindrical surface of the tunnel. 

For further transformations, it is more convenient to write the above equations in a 
cylindrical coordinate system ,x r  and θ  the relationship of which with Cartesian coordinates 
is expressed by the following equalities: 

xx = ;   θcosry =  ;  θsinrz = . (6)  

Here it is assumed that the axis again coincides with the longitudinal axis of the circular 
duct (Fig. 1).  

Fig.1 The calculation schemes of the wave movement of the flow in the non 
-pressure water conduit of the round cross section.

a) an almost completely filled waterflower;
b) a water water with a small filling compared to the radius

          The  radius  vector  r  originates  at  the  center  of  the  circle,  and  the  polar  angle      is 
measured from the horizontal diameter in the opposite clockwise direction. In such a coordinate
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x,  respectively, is written in the form 

r sinθ = +h and r sinθ = −h , and the cylindrical surface of the conduit is expressed by the 
equality r = R0 , where R0  is the inner radius of the conduit. 

As a result of standard transformations, the system of equations (3) ÷ (5) in 
polar coordinates takes the form: 
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The solution of the boundary value problem (7)÷(9) is associated with large, yet 
insurmountable mathematical difficulties. In the case of water conduits of circular cross section, 
these difficulties are further aggravated by the fact that it is impossible to choose such a 
coordinate system in which the cylindrical surface of the conduit and the free surface of the 
water flow are simultaneously described by linear relations. In particular, if in a cylindrical 
coordinate system the round inner surface of the conduit is described by a linear formula, then 
for the horizontal surface of the flow in the conduit we are forced to apply a nonlinear 
dependence. Other types of transformations cause non-linear changes in the system of basic 
equations and create new difficulties. For all these reasons, we are forced to confine ourselves 
to the consideration of the limiting (asymptotic) fillings of a circular water conduit listed above. 
But before that, let's make general transformations based on the representation of the velocity 
potential of wave disturbances as a periodic complex function in time t  and along the 
longitudinal coordinate x : 

( ) )](exp[, kxtir −= σθψϕ , (10) 

where  i  is the imaginary unit; τπσ /2= - frequency of wave oscillations; τ - period; 
λπ /2=k - wave number; λ - wavelength (distance between two adjacent points of the wave 

surface that are in the same phase). 
Taking into account the notation (10), the system of basic equations (11)÷(13) takes a 

simpler form 
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system, the equations of the unperturbed free surface of the flow,  depending  on  whether this 
surface   is   above   or   below   the   horizontal   axis 
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The system of equations (11) ÷ (13) still retains its generality, since it can be used as the 
basis for studying the movement of waves on the free surface of a free flow in water conduits 
of a circular cross section and arbitrary filling 
 

2. Stability of water flow in an almost filled non-pressure round cylindrical channel. 
If a circular water conduit is filled almost completely, we can assume that the change in 

the polar angle within the narrow free surface of the flow is insignificant, and its sine and cosine 
take on the values 1sin ≈θ and 0cos ≈θ . In this case, taking into account condition (10), 
we can also assume that the function  ψ does not change in θ not only on the free surface, but 
also at any internal point of the fluid and write the system of equations (11) ÷ (13) in the 
following simplified form: 
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As you can see, due to the small width of the liquid surface, the simplified boundary 

condition (15), in contrast to (12), is satisfied not on the surface hr =θsin , but at a point 
hr = on the vertical axis of symmetry. 
The boundary value problem (14) ÷ (16) is subject to exact solution. In particular, the 

solution of equation (14) (the Bessel equation) is usually written in modified zero-order Bessel 
functions (Watson) 

 
  ( ) ( )krKCkrIC 0201 +=ψ  ,                                                     (17) 

 
where 1C and 2C  are integration constants; The functions ( )krI0 and ( )krK0  ( ( )krK0 also called 
the McDonalds function [6,7, 8]) belong to the class of special functions and are not expressed 
in terms of elementary functions, which makes them somewhat inconvenient for engineering 
use, despite the fact that these functions are presented in tabular and graphical forms (Watson 
[5], Jahnke- Emde-Lesh [6]). Therefore, whenever possible, instead of special functions, they 
often resort to using their asymptotic representations, which are usually expressed in terms of 
elementary functions and which correspond to large values of their argument (in our case kr ). 

These asymptotic formulas have the following form (Matthews-Walker [9]): 
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 denotes an infinite sum by an order of magnitude of small values. 

Taking into account expressions (18) and (19), the general asymptotic solution (17) is 
written as follows: 
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With the help of the boundary condition (16), which is satisfied on the inner cylindrical 

surface of a sufficiently large radius, the constants and can be reduced to a single constant . In 
particular, if we use the rule of differentiation of asymptotic dependences (Stoker [4]), then 
from the boundary condition (16) we obtain: 
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from which the constants are easily determined and, consequently, the real part of the desired 
function takes on the following final output: 
 

 ( )rRk
r

R
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0 coshψ ,                                                  (22) 

 
Let us now substitute (22) in the boundary condition (15), which is satisfied on the free 

surface of the liquid. Following its asymptotic derivative, we get: 
 

( ) ( ) ( )hRkghRkkU −−=−− 00
2

0 sinhcoshσ ,                               (23) 
 
whose solution with respect to frequency leads to the following dispersion relation: 
 

  ( )hRkgkkU −−±= 00 tanhσ  .                                              (24) 
 

        It is the analysis of this dispersion relation that gives us the opportunity to judge the 
Helmholtz stability of wave motion in a water conduit with a circular cross section filled almost 

completely. In particular, according to (24), since h  is always less than 0R  , and 0>k , the 
value of the expression under the root is negative and, therefore, (24) is a complex number: 
 

  ( )hRkgkikU −±= 00 tanhσ .                                                (25) 
 

        If we substitute this frequency value in expression (10), we will see that one of the roots 
of formula (25), (namely, the root with a negative sign), leads to an exponential growth in time 
of the potential of wave disturbances 

 mte~ϕ ,   where ( ))tanh 0 hRkgkm −=  ,                                   (26) 
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which indicates the instability of the wave motion in an almost filled round cylindrical conduit. 
Thus, in the study, an important result was obtained: 
If a circular conduit (tunnel or pipeline) is almost completely filled with water, then 

any disturbance on the surface of this liquid will inevitably increase and lead to a splash 
of liquid on the ceiling of the conduit. 

It is the manifestation of such instability that can explain the decrease in the throughput 
of round water conduits when they are almost completely filled. In this connection, let us recall 
the process of pouring water from a bottle, which, as you know, if the bottle is sufficiently 
inclined, is always accompanied by vibration and a pulsating flow of water. 

The results of experimental studies of circular water conduits really confirm the fact that 
when the water conduit is almost completely filled, it becomes more difficult to measure the 
flow of water into it. In particular, one of the well-known representatives of the Georgian 
researcher Chanishvili [10], as a result of his meticulous experiments carried out in 1947, came 
to the conclusion that “sufficiently reliable experiments are possible only up to filling 

D0,95÷0,93  ( D  - diameter). With an increase in filling from 0.93÷0.95% to 100%, the 
experiments became impossible; Neither ventilation holes nor viewing windows helped, and 
therefore the points corresponding to this regime were plotted only by recalculating the 
experimental points corresponding to the pressure regime". In addition, it is most remarkable 
for us that Chanishvili came to the conclusion that “despite the change in slopes (that is, the 
change in flow rates - the authors), the maximum throughput in the experimental pipeline was 
observed when the pipeline was filled to 0.92÷0.93% ". At the same time, "the experiments 
failed to determine the effect of ventilation (i.e., the presence of an air layer - the authors) on 
the flow resistance in general." 

As you can see, our theoretical studies are fully consistent with the results of Chanishvili's 
experiments. This correspondence is also manifested in the fact that, according to dependence (23), the 
instability does not depend on the flow velocity; It depends only on the filling of the conduit (i.e., on the 
thickness ( )hR −0  of the air layer between the free flow surface and the ceiling of the vessel) and on 

the perturbation wavelength ( )k/2πλ = . As the values of these quantities increase, the coefficient of 
flow instability decreases. 

This feature of the pressureless movement of water in almost filled water conduits of a circular 
cross section was completely rejected by some well-known experts in hydraulics (for example, Bulow 
[11]), believing that with an increase in the liquid level in the conduit, the water flow increases 
monotonically. Other hydraulics (including Chanishvili) believed (and is still accepted in hydraulics 
courses) that, in accordance with the Shezy law, in circular water conduits, reaching a certain filling (in 
particular, 95% according to Luger [12]), the water flow begins to decrease, which can hardly be 
imagined with increasing flow depth. 

As a result of our study, when a water conduit with a circular cross section is 90% or 
more filled with water, the use of the Chezy formula is not allowed, since with such a filling, 
as shown above, it is in principle impossible to implement a stable stationary mode of water 
flow in a water conduit with a circular cross section, which corresponds to Chezy formula. 

As it follows from [13], the unstable state of the flow persists even after the pipeline is 
completely filled and the flow passes into the turbulent pressure regime. 
 

3. Stability of water flow in an almost empty channel round-cylindrical shape. In 
this particular boundary case (Fig. 1.b)) the polar angle θ takes values close to 90°, so that 
the following approximate equalities 1sin −≈θ and 0cos ≈θ  are fulfilled. 
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In addition, when the water horizon is located below the center of the conduit, in condition 
(10), before h , the sign "-" must be taken. Taking into account all this, the system of equations 
(9)÷(11) will take the form:

01 2
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=−⋅+ ψψψ k
dr
d

rdr
d ; (27) 

( ) ,2
0 dr
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,0=
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Here, as well as in equation (14), the second order derivative with respect to the polar 
angle is neglected as a small value. This neglect is also due to the fact that the boundary 
conditions (13) and (28), which are satisfied on the free surface of the liquid, do not contain the 
derivative with respect to the polar angle .θ  Thus, the difference between the systems of 
equations (27)÷(29) and (14)÷ (16) is expressed only in the "-" sign in the boundary condition 

(25), which is in front of the term 
dr
dψ .

It is this sign that determines the fundamental difference that the solution of the system 
of equations (27) ÷ (29) gives in comparison with the solution of the system (14) ÷ (16). We 
will not go into the details of solving system (27) ÷ (29), since this procedure actually repeats 
the solution procedure described in the previous paragraph. We present only the final results 
of the asymptotic solution of system (27) ÷ (29). In particular, as in the previous case, the 
velocity field potential in complex form will be expressed by the following asymptotic 
dependence: 

 ( ) ( ) ( )kxtikxti erRk
r

Rce −− −=⋅= σσψϕ 0
0 cosh ,            (30) 

or, if we confine ourselves to the real part of the solution (30), - the dependence 

 ( ) ( )kxtrRk
r

Rc −−= σϕ coscosh 0
0 ,            (31) 

in which, in contrast to dependence (22), the frequency of wave oscillations is a real number 
and is calculated by the formula 

 ( )hRkgkkU −±= 00 tanhσ ,   (32) 

according to which the wave motion in a water conduit with a circular cross section, at a 
moderate speed and with a filling that is small compared to the radius, is stable. 

4. On the stability of the water flow in a half-filled round cylindrical channel. When
a water conduit of circular cross section is half filled, it can be assumed that the polar angle θ
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θθ ≈sin and 1cos ±≈θ are fulfilled (the sign “-” corresponds to the 
consideration of the semicircle left from the symmetry axis of the channel. We will restrict 
ourselves to the consideration of the right semicircle, with the sign “+ ”, which is identical to 
the consideration of the left semicircle). 

Then, taking into account the approximate equalities θθ ≈sin and 1cos ±≈θ , the 
system of basic equations (9)÷(11) takes the form: 
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As we can see, the system of equations (33)÷(35) differs significantly from the systems 
of equations (14)÷(16) and (27)÷(29) considered above. This difference is primarily manifested 
in the condition on the free surface (34), according to which the oscillation frequency σ  
depends on the derivative of the potential with respect to the polar angle θ . Boundary 
conditions (34)÷(35) defined by two different arguments indicate that in the case under 
consideration the problem can have several solutions. 

Even an approximate solution of the system of equations (33)÷(35) is associated with 
great mathematical difficulties. We will consider here only the possibility of propagation in a 
semicircular water conduit of such waves, symmetric about the axis, whose velocity potential 
does not depend on the polar angle θ . In this case, as follows from condition (34), the frequency 
of wave oscillations should be equal to the product of the wave number and the constant flow 
velocity 0kU=σ , which, in this case, indicates the absence of longitudinal waves, not only in 

the case when the flow velocity 00 =U , but also in the case , when  00 ≠U . 

Indeed, if we use the equality 0kU=σ  and substitute it in the substitute it in the 

expression )sin(0 kxta −= ση  for the wave surface, we get that )(sin 00 xtUka −=η , 

according to which, since in our case the velocity txU /0 = , the coordinate of the wave surface 
η  turns out to be a constant (namely, zero) value. 

Conclusion 
Mathematically non-rigorous statement, allows us only to assume that the uniform flow 

of water in half-filled channels of circular cross section is always stable and the flow retains its 
original mirror surface. 
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ԿԼՈՐ ԿՏՐՎԱԾՔՈՎ ՈՉ ՃՆՇՈՒՄԱՅԻՆ ՋՐԱՏԱՐՆԵՐՈՒՄ  
ՋՐԻ ՇԱՐԺՄԱՆ ԿԱՅՈՒՆՈՒԹՅԱՆ ՄԱՍԻՆ 

 

Գագոշիձե Շ․Ն․, Կոդուա Մ․Ա․ 
Վրաստանի տեխնիկական համալսարան 

 

Դիտարկվում է կլոր կտրվածքով ջրատարում ոչ ճնշումային շարժման 
կայունությունը։ Ալիքային գրգռումների մեթոդի կիրառմամբ, առաջին անգամ, 
մաթեմատիկորեն հիմնավորվում են գրեթե ամբողջությամբ ջրով լցված կլոր կտրվածքով 
թունելում կամ ջրատարում շարժման խզվածության պատճառները։ 

Ստացված տեսական արդյունքները համադրելի են գոյություն ունեցող բնօրինակ և 
լաբորատոր փորձարարական տվյալների հետ։ 92-93% ջրով լցված կլոր կտրվածքով 
ջրատարում շարժոմը անկայուն է, դիտվում է առաստաղին ջրի ցայտումներ։  

Արտածվել է նաև կիսով և փոքր չափով ջրով լցված կլոր կտրվածքով ջրատարում 
շարժման ասիմտոտիկ հավասարումներ, որոնց որոկական վերլուծությունը ցույց է տալիս, 
որ այդ պարագայում առաջացող մակերևութային ալիքները կայուն են։ 

 

Բանալի բառեր. ոչ ճնշումային շարժում, կլոր կտրվածք, ալիքային գրգռումներ, 
կայունություն։ 

 
  

ОБ УСТОЙЧИВОСТИ ДВИЖЕНИЯ ВОДЫ В БЕЗНАПОРНЫХ  
ВОДОВОДАХ КРУГЛОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ 

 
Гагошидзе Ш.Н.,  Кодуа М.А. 
Грузинский технический университет 

 

Рассматривается устойчивость движения жидкости в безнапорных водоводах   
круглого поперечного сечения. С помощью метода волновых возмущений впервые 
математически обосновано, почему течения в туннелях или трубопроводах круглого 
сечения происходит прерывисто, когда они заполнены почти полностью. Полученные 
теоретические результаты согласуются с существующими экспериментальными и 
натурными наблюдениями, согласно которым в безнапорных водоводах круглого 
сечения при их заполнении более чем на 92-93% вода всегда движется прерывисто, со 
всплесками на потолок, т. е. неустойчиво. 

Выводятся также асимптотические уравнения для описания волновых движений в 
наполовину или в малой степени наполненных каналах круглого поперечного сечения, 
качественный анализ которых указывает на устойчивость возникших в них 
поверхностных волн. 

 
Ключевые слова: безнапорное движение,  круглое сечение, волновые возмущения,   

устойчивость. 
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